友情链接的网站图片,厦门专业做网站的,贵阳市网站开发,建个网站用多少钱本文分析基于Android R(11)源码Java对象的创建由Allocator负责#xff0c;回收由Collector负责。从Android O开始#xff0c;对于前台应用默认的GC Collector是CC(Concurrent Copying) Collector#xff0c;与之相匹配的Allocator则是Region-based Bump Pointer Allocator(w… 本文分析基于Android R(11)源码Java对象的创建由Allocator负责回收由Collector负责。从Android O开始对于前台应用默认的GC Collector是CC(Concurrent Copying) Collector与之相匹配的Allocator则是Region-based Bump Pointer Allocator(with TLAB)。本文不打算讨论CC Collector和Region TLAB的细节和实现一是因为这些内容受众较少二是因为我自己还在慢慢摸索和吃透其中的细节可能日后会专门成文介绍他们。除去繁杂的细节介绍本文希望回答一个简单的问题对前台应用而言GC到底会在何时触发art/runtime/gc/gc_cause.h25 // What caused the GC?
26 enum GcCause {
27 // Invalid GC cause used as a placeholder.
28 kGcCauseNone,
29 // GC triggered by a failed allocation. Thread doing allocation is blocked waiting for GC before
30 // retrying allocation.
31 kGcCauseForAlloc,
32 // A background GC trying to ensure there is free memory ahead of allocations.
33 kGcCauseBackground,
34 // An explicit System.gc() call.
35 kGcCauseExplicit,
36 // GC triggered for a native allocation when NativeAllocationGcWatermark is exceeded.
37 // (This may be a blocking GC depending on whether we run a non-concurrent collector).
38 kGcCauseForNativeAlloc,
39 // GC triggered for a collector transition.
40 kGcCauseCollectorTransition,
41 // Not a real GC cause, used when we disable moving GC (currently for GetPrimitiveArrayCritical).
42 kGcCauseDisableMovingGc,
43 // Not a real GC cause, used when we trim the heap.
44 kGcCauseTrim,
45 // Not a real GC cause, used to implement exclusion between GC and instrumentation.
46 kGcCauseInstrumentation,
47 // Not a real GC cause, used to add or remove app image spaces.
48 kGcCauseAddRemoveAppImageSpace,
49 // Not a real GC cause, used to implement exclusion between GC and debugger.
50 kGcCauseDebugger,
51 // GC triggered for background transition when both foreground and background collector are CMS.
52 kGcCauseHomogeneousSpaceCompact,
53 // Class linker cause, used to guard filling art methods with special values.
54 kGcCauseClassLinker,
55 // Not a real GC cause, used to implement exclusion between code cache metadata and GC.
56 kGcCauseJitCodeCache,
57 // Not a real GC cause, used to add or remove system-weak holders.
58 kGcCauseAddRemoveSystemWeakHolder,
59 // Not a real GC cause, used to prevent hprof running in the middle of GC.
60 kGcCauseHprof,
61 // Not a real GC cause, used to prevent GetObjectsAllocated running in the middle of GC.
62 kGcCauseGetObjectsAllocated,
63 // GC cause for the profile saver.
64 kGcCauseProfileSaver,
65 // GC cause for running an empty checkpoint.
66 kGcCauseRunEmptyCheckpoint,
67 };
根据GcCause可知可以触发GC的条件还是很多的。对于开发者而言常见的是其中三种GcCauseForAlloc通过new分配新对象时堆中剩余空间(普通应用默认上限为256M声明largeHeap的应用为512M)不足因此需要先进行GC。这种情况会导致当前线程阻塞。GcCauseExplicit当应用调用系统API System.gc()时会产生一次GC动作。GcCauseBackground后台GC这里的“后台”并不是指应用切到后台才会执行的GC而是GC在运行时基本不会影响其他线程的执行所以也可以理解为并发GC。相比于前两种GC后台GC出现的更多也更加隐秘因此值得详细介绍。下文讲述的全是这种GC。Java堆的实际大小起起伏伏影响的因素无非是分配和回收。分配的过程是离散且频繁的它来自于不同的工作线程而且可能每次只分配一小块区域。回收的过程则是统一且偶发的它由HeapTaskDaemon线程执行在GC的多个阶段中都采用并发算法因此不会暂停工作线程(实际上会暂停很短一段时间)。当我们在Java代码中通过new分配对象时虚拟机会调用AllocObjectWithAllocator来执行真实的分配。在每一次成功分配Java对象后都会去检测是否需要进行下一次GC这就是GcCauseBackground GC的触发时机。art/runtime/gc/heap-inl.h44 template bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor
45 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
46 ObjPtrmirror::Class klass,
47 size_t byte_count,
48 AllocatorType allocator,
49 const PreFenceVisitor pre_fence_visitor) {
...
243 // IsGcConcurrent() isnt known at compile time so we can optimize by not checking it for
244 // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
245 // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
246 // the allocator_type should be constant propagated.
247 if (AllocatorMayHaveConcurrentGC(allocator) IsGcConcurrent()) {
248 // New_num_bytes_allocated is zero if we didnt update num_bytes_allocated_.
249 // Thats fine.
250 CheckConcurrentGCForJava(self, new_num_bytes_allocated, obj); This line
251 }
252 VerifyObject(obj);
253 self-VerifyStack();
254 return obj.Ptr();
255 }
467 inline void Heap::CheckConcurrentGCForJava(Thread* self,
468 size_t new_num_bytes_allocated,
469 ObjPtrmirror::Object* obj) {
470 if (UNLIKELY(ShouldConcurrentGCForJava(new_num_bytes_allocated))) { This line
471 RequestConcurrentGCAndSaveObject(self, false /* force_full */, obj);
472 }
473 }
460 inline bool Heap::ShouldConcurrentGCForJava(size_t new_num_bytes_allocated) {
461 // For a Java allocation, we only check whether the number of Java allocated bytes excceeds a
462 // threshold. By not considering native allocation here, we (a) ensure that Java heap bounds are
463 // maintained, and (b) reduce the cost of the check here.
464 return new_num_bytes_allocated concurrent_start_bytes_; This line
465 }
466
触发的条件需要满足一个判断如果new_num_bytes_allocated(所有已分配的字节数包括此次新分配的对象) concurrent_start_bytes_(下一次GC触发的阈值)那么就请求一次新的GC。new_num_bytes_alloated是当前分配时计算的concurrent_start_bytes_是上一次GC结束时计算的。以下将分别介绍这两个值的计算过程和背后的设计思想。1. new_num_bytes_allocated的计算过程art/runtime/gc/heap-inl.h44 template bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor
45 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
46 ObjPtrmirror::Class klass,
47 size_t byte_count,
48 AllocatorType allocator,
49 const PreFenceVisitor pre_fence_visitor) {
...
83 size_t new_num_bytes_allocated 0;
84 {
85 // Do the initial pre-alloc
86 pre_object_allocated();
...
107 if (IsTLABAllocator(allocator)) {
108 byte_count RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
109 }
110 // If we have a thread local allocation we dont need to update bytes allocated.
111 if (IsTLABAllocator(allocator) byte_count self-TlabSize()) {
112 obj self-AllocTlab(byte_count);
113 DCHECK(obj ! nullptr) AllocTlab cant fail;
114 obj-SetClass(klass);
115 if (kUseBakerReadBarrier) {
116 obj-AssertReadBarrierState();
117 }
118 bytes_allocated byte_count;
119 usable_size bytes_allocated;
120 no_suspend_pre_fence_visitor(obj, usable_size);
121 QuasiAtomic::ThreadFenceForConstructor();
122 } else if (
123 !kInstrumented allocator kAllocatorTypeRosAlloc
124 (obj rosalloc_space_-AllocThreadLocal(self, byte_count, bytes_allocated)) ! nullptr
125 LIKELY(obj ! nullptr)) {
126 DCHECK(!is_running_on_memory_tool_);
127 obj-SetClass(klass);
128 if (kUseBakerReadBarrier) {
129 obj-AssertReadBarrierState();
130 }
131 usable_size bytes_allocated;
132 no_suspend_pre_fence_visitor(obj, usable_size);
133 QuasiAtomic::ThreadFenceForConstructor();
134 } else {
135 // Bytes allocated that includes bulk thread-local buffer allocations in addition to direct
136 // non-TLAB object allocations.
137 size_t bytes_tl_bulk_allocated 0u;
138 obj TryToAllocatekInstrumented, false(self, allocator, byte_count, bytes_allocated,
139 usable_size, bytes_tl_bulk_allocated);
140 if (UNLIKELY(obj nullptr)) {
141 // AllocateInternalWithGc can cause thread suspension, if someone instruments the
142 // entrypoints or changes the allocator in a suspend point here, we need to retry the
143 // allocation. It will send the pre-alloc event again.
144 obj AllocateInternalWithGc(self,
145 allocator,
146 kInstrumented,
147 byte_count,
148 bytes_allocated,
149 usable_size,
150 bytes_tl_bulk_allocated,
151 klass);
152 if (obj nullptr) {
153 // The only way that we can get a null return if there is no pending exception is if the
154 // allocator or instrumentation changed.
155 if (!self-IsExceptionPending()) {
156 // Since we are restarting, allow thread suspension.
157 ScopedAllowThreadSuspension ats;
158 // AllocObject will pick up the new allocator type, and instrumented as true is the safe
159 // default.
160 return AllocObject/*kInstrumented*/true(self,
161 klass,
162 byte_count,
163 pre_fence_visitor);
164 }
165 return nullptr;
166 }
167 }
168 DCHECK_GT(bytes_allocated, 0u);
169 DCHECK_GT(usable_size, 0u);
170 obj-SetClass(klass);
171 if (kUseBakerReadBarrier) {
172 obj-AssertReadBarrierState();
173 }
174 if (collector::SemiSpace::kUseRememberedSet
175 UNLIKELY(allocator kAllocatorTypeNonMoving)) {
176 // (Note this if statement will be constant folded away for the fast-path quick entry
177 // points.) Because SetClass() has no write barrier, the GC may need a write barrier in the
178 // case the object is non movable and points to a recently allocated movable class.
179 WriteBarrier::ForFieldWrite(obj, mirror::Object::ClassOffset(), klass);
180 }
181 no_suspend_pre_fence_visitor(obj, usable_size);
182 QuasiAtomic::ThreadFenceForConstructor();
183 if (bytes_tl_bulk_allocated 0) {
184 size_t num_bytes_allocated_before
185 num_bytes_allocated_.fetch_add(bytes_tl_bulk_allocated, std::memory_order_relaxed);
186 new_num_bytes_allocated num_bytes_allocated_before bytes_tl_bulk_allocated;
187 // Only trace when we get an increase in the number of bytes allocated. This happens when
188 // obtaining a new TLAB and isnt often enough to hurt performance according to golem.
189 if (region_space_) {
190 // With CC collector, during a GC cycle, the heap usage increases as
191 // there are two copies of evacuated objects. Therefore, add evac-bytes
192 // to the heap size. When the GC cycle is not running, evac-bytes
193 // are 0, as required.
194 TraceHeapSize(new_num_bytes_allocated region_space_-EvacBytes());
195 } else {
196 TraceHeapSize(new_num_bytes_allocated);
197 }
198 }
199 }
200 }
...
243 // IsGcConcurrent() isnt known at compile time so we can optimize by not checking it for
244 // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
245 // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
246 // the allocator_type should be constant propagated.
247 if (AllocatorMayHaveConcurrentGC(allocator) IsGcConcurrent()) {
248 // New_num_bytes_allocated is zero if we didnt update num_bytes_allocated_.
249 // Thats fine.
250 CheckConcurrentGCForJava(self, new_num_bytes_allocated, obj);
251 }
...
255 }
AllocObjectWithAllocator的实际分配可以分为三条分支但如果限定为Region-based Bump Pointer Allocator则只剩两条分支如果当前线程TLAB区域的剩余空间可以容纳下这次分配的对象则在TLAB区域中直接分配。分配算法采用Bump Pointer的方式仅仅更新已分配区域的游标简单高效。art/runtime/thread-inl.h307 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
308 DCHECK_GE(TlabSize(), bytes);
309 tlsPtr_.thread_local_objects;
310 mirror::Object* ret reinterpret_castmirror::Object*(tlsPtr_.thread_local_pos);
311 tlsPtr_.thread_local_pos bytes;
312 return ret;
313 }
在这种情况下new_num_bytes_allocated为0表明Java堆的已使用区域并没有增大。这是因为TLAB在创建之初它的大小已经计入了num_bytes_allocated_所以这次虽然分配了新的对象但num_bytes_allocated_没必要增加。那么紧接着就来了一个问题为什么TLAB在创建之初就要将大小计入num_bytes_allocated_呢?可是此时TLAB明明还没有被使用。这实际上是一个空间换时间的策略。以下是当时这笔改动的commit message通过事先将大小计入num_bytes_allocated_从而不必要每次分配都更新它减少针对num_bytes_allocated_的原子操作提高性能。代价就是会导致num_bytes_allocated_略大于真实使用的字节数。[Commit Message]Faster TLAB allocator.New TLAB allocator doesnt increment bytes allocated until we allocate
a new TLAB. This increases allocation performance by avoiding a CAS.MemAllocTest:
Before GSS TLAB: 3400ms.
After GSS TLAB: 2750ms.Bug: 9986565Change-Id: I1673c27555330ee90d353b98498fa0e67bd57fad
Author: mathieucgoogle.com
Date: 2014-07-12 05:18
如果当前线程TLAB区域的剩余空间无法容纳下这次分配的对象则为当前线程创建一个新的TLAB。在这种情况下新分配出来的TLAB大小需要计入num_bytes_allocated_因此new_num_bytes_allocated num_bytes_allocated_before bytes_tl_bulk_allocated。2. concurrent_start_bytes_的计算过程art/runtime/gc/heap.cc2573 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2574 GcCause gc_cause,
2575 bool clear_soft_references) {
...
2671 collector-Run(gc_cause, clear_soft_references || runtime-IsZygote());
2672 IncrementFreedEver();
2673 RequestTrim(self);
2674 // Collect cleared references.
2675 SelfDeletingTask* clear reference_processor_-CollectClearedReferences(self);
2676 // Grow the heap so that we know when to perform the next GC.
2677 GrowForUtilization(collector, bytes_allocated_before_gc);
2678 LogGC(gc_cause, collector);
2679 FinishGC(self, gc_type);
2680 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2681 // otherwise we can deadlock.
2682 clear-Run(self);
2683 clear-Finalize();
2684 // Inform DDMS that a GC completed.
2685 Dbg::GcDidFinish();
2686
2687 old_native_bytes_allocated_.store(GetNativeBytes());
2688
2689 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2690 // deadlocks in case the JNI_OnUnload function does allocations.
2691 {
2692 ScopedObjectAccess soa(self);
2693 soa.Vm()-UnloadNativeLibraries();
2694 }
2695 return gc_type;
2696 }
CollectGarbageInternal是HeapTaskDaemon线程执行GC时需要调用的函数。其中2671行将执行真正的GC而concurrent_start_bytes_的计算则在2677行的GrowForUtilization函数中。art/runtime/gc/heap.cc3514 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3515 size_t bytes_allocated_before_gc) {
3516 // We know what our utilization is at this moment.
3517 // This doesnt actually resize any memory. It just lets the heap grow more when necessary.
3518 const size_t bytes_allocated GetBytesAllocated();
3519 // Trace the new heap size after the GC is finished.
3520 TraceHeapSize(bytes_allocated);
3521 uint64_t target_size, grow_bytes;
3522 collector::GcType gc_type collector_ran-GetGcType();
3523 MutexLock mu(Thread::Current(), process_state_update_lock_);
3524 // Use the multiplier to grow more for foreground.
3525 const double multiplier HeapGrowthMultiplier();
3526 if (gc_type ! collector::kGcTypeSticky) {
3527 // Grow the heap for non sticky GC.
3528 uint64_t delta bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3529 DCHECK_LE(delta, std::numeric_limitssize_t::max()) bytes_allocated bytes_allocated
3530 target_utilization_ target_utilization_;
3531 grow_bytes std::min(delta, static_castuint64_t(max_free_));
3532 grow_bytes std::max(grow_bytes, static_castuint64_t(min_free_));
3533 target_size bytes_allocated static_castuint64_t(grow_bytes * multiplier);
3534 next_gc_type_ collector::kGcTypeSticky;
3535 } else {
...
3562 // If we have freed enough memory, shrink the heap back down.
3563 const size_t adjusted_max_free static_castsize_t(max_free_ * multiplier);
3564 if (bytes_allocated adjusted_max_free target_footprint) {
3565 target_size bytes_allocated adjusted_max_free;
3566 grow_bytes max_free_;
3567 } else {
3568 target_size std::max(bytes_allocated, target_footprint);
3569 // The same whether jank perceptible or not; just avoid the adjustment.
3570 grow_bytes 0;
3571 }
3572 }
3573 CHECK_LE(target_size, std::numeric_limitssize_t::max());
3574 if (!ignore_target_footprint_) {
3575 SetIdealFootprint(target_size);
...
3585 if (IsGcConcurrent()) {
3586 const uint64_t freed_bytes current_gc_iteration_.GetFreedBytes()
3587 current_gc_iteration_.GetFreedLargeObjectBytes()
3588 current_gc_iteration_.GetFreedRevokeBytes();
3589 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3590 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3591 CHECK_GE(bytes_allocated freed_bytes, bytes_allocated_before_gc);
3592 const size_t bytes_allocated_during_gc bytes_allocated freed_bytes -
3593 bytes_allocated_before_gc;
3594 // Calculate when to perform the next ConcurrentGC.
3595 // Estimate how many remaining bytes we will have when we need to start the next GC.
3596 size_t remaining_bytes bytes_allocated_during_gc;
3597 remaining_bytes std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3598 remaining_bytes std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3599 size_t target_footprint target_footprint_.load(std::memory_order_relaxed);
3600 if (UNLIKELY(remaining_bytes target_footprint)) {
3601 // A never going to happen situation that from the estimated allocation rate we will exceed
3602 // the applications entire footprint with the given estimated allocation rate. Schedule
3603 // another GC nearly straight away.
3604 remaining_bytes std::min(kMinConcurrentRemainingBytes, target_footprint);
3605 }
3606 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3607 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3608 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3609 // right away.
3610 concurrent_start_bytes_ std::max(target_footprint - remaining_bytes, bytes_allocated);
3611 }
3612 }
3613 }
concurrent_start_bytes_的计算分为两个步骤计算出target_size一个仅具有指导意义的最大可分配字节数。根据target_size计算出下一次GC的触发水位concurrent_start_bytes_。2.1 target_size的计算过程2.1.1 Sticky GCkGcTypeSticky是分代GC下的一种GC类型表示只针对两次GC时间内新分配的对象进行回收也可以理解为Young-generation GC。如果gc_type为kGcTypeSticky则执行如下过程art/runtime/gc/heap.cc3562 // If we have freed enough memory, shrink the heap back down.
3563 const size_t adjusted_max_free static_castsize_t(max_free_ * multiplier);
3564 if (bytes_allocated adjusted_max_free target_footprint) {
3565 target_size bytes_allocated adjusted_max_free;
3566 grow_bytes max_free_;
3567 } else {
3568 target_size std::max(bytes_allocated, target_footprint);
3569 // The same whether jank perceptible or not; just avoid the adjustment.
3570 grow_bytes 0;
3571 }
max_free_的本意是target_size与已分配内存间可允许的最大差异差异过小会导致GC频繁差异过大则又会延迟下一次GC的到来目前很多设备将这个值设为8Mmin_free_设为512K。其实针对RAM超过6G的大内存设备Google建议可以提高min_free_用空间换时间获取更好的GC性能。multiplier的引入主要是为了优化前台应用默认的前台multipiler为2这样可以在下次GC前有更多的空间分配对象。以下是引入multipiler的代码的commit message增大free的空间自然就降低了利用率。[Commit Message]Decrease target utilization for foreground apps.GC time in FormulaEvaluationActions.EvaluateAndApplyChanges goes from
26.1s to 23.2s. Benchmark score goes down ~50 in
FormulaEvaluationActions.EvaluateAndApplyChanges, and up ~50 in
GenericCalcActions.MemAllocTest.Bug: 8788501
Change-Id: I412af1205f8b67e70a12237c990231ea62167bc0
Author: mathieucgoogle.com
Date: 2014-04-17 03:37
当bytes_allocated adjusted_max_free target_footprint时说明这次GC释放了很多空间因此可以适当地降低下次GC的触发水位。如果bytes_allocated adjusted_max_free ≥ target_footprint则取target_footprint和bytes_allocated中的较大值作为target_size。这种情况这次GC释放的空间不多。当target_footprint较大时即便bytes_allocated逼近target_footprint也不增大target_size是因为当前GC为Sticky GC(又可理解为Young-generation GC)如果它释放的空间不多接下来还可以采用Full GC来更彻底地回收。换言之只有等Full GC回收完才能决定将GC的水位提升因为这时已经尝试了所有的回收策略。当bytes_allocated较大时说明在GC过程中新申请的对象空间大于GC释放的空间(因为并发所以申请和释放可以同步进行)。这样一来最终计算的水位值将会小于bytes_allocated那岂不是下一次调用new分配对象时必然会阻塞实则不然。因为不论是target_size还是concurrent_start_bytes_他们都只有指导意义而无法实际限制堆内存的分配。对于CC Collector而言唯一限制堆内存分配的只有growth_limit_。不过水位值小于bytes_allocated倒是会使得下一次对象分配成功后立马触发一轮新的GC。2.1.2 Non-sticky GCart/runtime/gc/heap.cc3526 if (gc_type ! collector::kGcTypeSticky) {
3527 // Grow the heap for non sticky GC.
3528 uint64_t delta bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3529 DCHECK_LE(delta, std::numeric_limitssize_t::max()) bytes_allocated bytes_allocated
3530 target_utilization_ target_utilization_;
3531 grow_bytes std::min(delta, static_castuint64_t(max_free_));
3532 grow_bytes std::max(grow_bytes, static_castuint64_t(min_free_));
3533 target_size bytes_allocated static_castuint64_t(grow_bytes * multiplier);
3534 next_gc_type_ collector::kGcTypeSticky;
3535 }
首先会根据目标的利用率计算出新的delta然后将delta与min_free_和max_free_进行比较使得最终的grow_bytes落在[min_free_,max_free_]之间。target_size的计算还需考虑multipiler的影响这样会降低前台应用的堆利用率从而留有更多空间进行分配(降低GC的频率代价就是内存资源向前台应用倾斜)。以下是一部手机的堆配置其中数值可做参考。2.2 concurrent_start_bytes_的计算art/runtime/gc/heap.cc3585 if (IsGcConcurrent()) {
3586 const uint64_t freed_bytes current_gc_iteration_.GetFreedBytes()
3587 current_gc_iteration_.GetFreedLargeObjectBytes()
3588 current_gc_iteration_.GetFreedRevokeBytes();
3589 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3590 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3591 CHECK_GE(bytes_allocated freed_bytes, bytes_allocated_before_gc);
3592 const size_t bytes_allocated_during_gc bytes_allocated freed_bytes -
3593 bytes_allocated_before_gc;
3594 // Calculate when to perform the next ConcurrentGC.
3595 // Estimate how many remaining bytes we will have when we need to start the next GC.
3596 size_t remaining_bytes bytes_allocated_during_gc;
3597 remaining_bytes std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3598 remaining_bytes std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3599 size_t target_footprint target_footprint_.load(std::memory_order_relaxed);
3600 if (UNLIKELY(remaining_bytes target_footprint)) {
3601 // A never going to happen situation that from the estimated allocation rate we will exceed
3602 // the applications entire footprint with the given estimated allocation rate. Schedule
3603 // another GC nearly straight away.
3604 remaining_bytes std::min(kMinConcurrentRemainingBytes, target_footprint);
3605 }
3606 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3607 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3608 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3609 // right away.
3610 concurrent_start_bytes_ std::max(target_footprint - remaining_bytes, bytes_allocated);
3611 }
首先需要计算出在GC过程中新分配的对象大小记为bytes_allocated_during_gc。然后将它与kMinConcurrentRemainingBytes和kMaxConcurrentRemainingBytes进行比较使得最终的grow_bytes落在[kMinConcurrentRemainingBytes,kMaxConcurrentRemainingBytes]之间。art/runtime/gc/heap.cc108 // Minimum amount of remaining bytes before a concurrent GC is triggered.
109 static constexpr size_t kMinConcurrentRemainingBytes 128 * KB;
110 static constexpr size_t kMaxConcurrentRemainingBytes 512 * KB;
最终concurrent_start_bytes_的计算如下。之所以需要用target_footprint减去remaining_bytes是因为在理论意义上target_footprint_代表当前堆的最大可分配字节数。而由于是同步GC回收的过程中可能会有其他线程依然在分配。所以为了保证本次GC的顺利进行需要将这段时间分配的内存空间预留出来。art/runtime/gc/heap.ccconcurrent_start_bytes_ std::max(target_footprint - remaining_bytes, bytes_allocated);
不过需要注意的是上面阐述的理由仅局限在理论意义上就像target_footprint_和concurrent_start_bytes_只具有指导意义一样。所以即便下一次GC过程中分配的内存超过了预留的空间也并不会出现内存分配不出来而等待的情况。 推荐阅读 专辑|Linux文章汇总 专辑|程序人生 专辑|C语言嵌入式Linux微信扫描二维码关注我的公众号