建筑施工建设网站,广东培训seo,做网站襄樊,邢台企业网站建设报价1、加噪过程
1、将 图像 x 0 x_0 x0 像素值映射到 [-1, 1] 之间 x 255 2 − 1 , w h e r e x 为图像中的像素值 \quad \frac{x}{255} \times 2-1, \quad where \; x 为图像中的像素值 255x2−1,wherex为图像中的像素值 \quad
2、生成一张尺寸相同的噪声图片,像…1、加噪过程
1、将 图像 x 0 x_0 x0 像素值映射到 [-1, 1] 之间 x 255 × 2 − 1 , w h e r e x 为图像中的像素值 \quad \frac{x}{255} \times 2-1, \quad where \; x 为图像中的像素值 255x×2−1,wherex为图像中的像素值 \quad
2、生成一张尺寸相同的噪声图片,像素值服从标准正态分布 ϵ ∼ N ( 0 , 1 ) , w h e r e ϵ 为噪声图像中的像素值 \quad \epsilon \sim N(0, 1), \quad where \; \epsilon 为噪声图像中的像素值 ϵ∼N(0,1),whereϵ为噪声图像中的像素值 \quad
3、将 处理好的原图像 和 噪音图像 进行融合 \quad 新生成的图像像素计算公式为: β × ϵ + 1 − β × x \sqrt \beta \times \epsilon + \sqrt{1-\beta} \times x β ×ϵ+1−β ×x , β \;\;\beta β 取值范围 为 0~1
4、 连续的对图像进行加噪 t = 1 、 2 、 3... t=1、2、3 ... t=1、2、3... 时刻的图像像素值为 x 1 = β 1 × ϵ 1 + 1 − β 1 × x 0 x 2 = β 2 × ϵ 2 + 1 − β 2 × x 1 x 3 = β 3 × ϵ 3 + 1 − β 3 × x 2 . . . . x t = β t × ϵ t + 1 − β t × x t − 1 . . . . x t = β T × ϵ T + 1 − β T × x T − 1 (1) x_1 = \sqrt \beta_1 \times \epsilon_1 + \sqrt{1-\beta_1} \times x_0 \\ x_2 = \sqrt \beta_2 \times \epsilon_2 + \sqrt{1-\beta_2} \times x_1 \\ x_3 = \sqrt \beta_3 \times \epsilon_3 + \sqrt{1-\beta_3} \times x_2 \\ .... \\ x_t = \sqrt \beta_t \times \epsilon_t + \sqrt{1-\beta_t} \times x_{t-1} \\ .... \\ x_t = \sqrt \beta_T \times \epsilon_T + \sqrt{1-\beta_T} \times x_{T-1} \tag{1} x1=β 1×ϵ1+1−β1 ×x0x2=β 2×ϵ2+1−β2 ×x1x3=β 3×ϵ3+1−β3 ×x2....xt=β t×ϵt+1−βt ×xt−1....xt=β T×ϵT+1−βT ×xT−1(1)
备注 : 1) ϵ t \epsilon_t ϵt 都是在每个时刻 t t t 重新采样的随机数 2)每个时刻的 β t \beta_t βt 都各不相同, 0 β t 1 0 \beta_t 1 0βt1, 且 β 1 β 2 . . . β T − 1 β T \beta_1 \beta_2 ... \beta_{T-1} \beta_{T} β1β2...βT−1βT
为了简化推导过程,我们引入新的变量 α \alpha α : \quad α t = 1 − β t \alpha_t = 1-\beta_t αt=1−βt
将 α t = 1 − β t \alpha_t = 1-\beta_t αt=1−βt 带入上面的公式(1),得 : x t = 1 − α t × ϵ t + α t × x t − 1 (2) x_t = \sqrt {1- \alpha_t} \times \epsilon_t + \sqrt{\alpha_t} \times x_{t-1} \tag{2} xt=1−αt ×ϵt+αt ×xt−1(2) 2、简化加噪过程
目的 : 我们想直接使用 t=0 时刻的原始图像 x 0 x_0 x0 表示 t 时刻的图像 x t x_t xt
我们一步一步来推导,我们先尝试用 x t − 2 x_{t-2} xt−2 表示 x t x_t xt
由 公式 (2), 我们可得: x t = 1 − α t × ϵ t + α t × x t − 1 (2) x_t = \sqrt {1- \alpha_t} \times \epsilon_t + \sqrt{\alpha_t} \times x_{t-1} \tag{2} xt=1−αt ×ϵt+αt ×xt−1(2) x t − 1 = 1 − α t − 1 × ϵ t − 1 + α t − 1 × x t − 2 (3) x_{t-1} = \sqrt {1- \alpha_{t-1}} \times \epsilon_{t-1} + \sqrt{\alpha_{t-1}} \times x_{t-2} \tag{3} xt−1=1−αt−1 ×ϵt−1+αt−1 ×xt−2(3)
将 公式 (3) 带入 公式 (2), 得: x t = 1 − α t × ϵ t + α t × ( 1 − α t − 1 × ϵ t − 1 + α t − 1 × x t − 2 ) = α t ( 1 − α t − 1 ) × ϵ t − 1 + 1 − α t × ϵ t + α t α t − 1 × x t − 2 \begin{align}x_t = \sqrt {1- \alpha_t} \times \epsilon_t + \sqrt{\alpha_t} \times (\sqrt {1- \alpha_{t-1}} \times \epsilon_{t-1} + \sqrt{\alpha_{t-1}} \times x_{t-2}) \notag \\ = \sqrt {\alpha_t(1- \alpha_{t-1})} \times \epsilon_{t-1} + \sqrt{1-\alpha_t} \times \epsilon_t+\sqrt {\alpha_t \alpha_{t-1}} \times x_{t-2} \tag{4} \end{align} xt=1−αt ×ϵt+αt