当前位置: 首页 > news >正文

嘉义县网站建设_网站建设公司_网站备案_seo优化

做音乐相册的网站,如何做好网站排名,怎么才能访问自己做的网站,惠州企业建站系统文章概述 文章研究了城市物流背景下带有第三方转运设施的车辆路径问题。与经典的车辆路径问题不同#xff0c;这些问题提供了将客户需求交付给第三方转运设施#xff08;如城市集散中心#xff09;的选择#xff0c;并收取一定的费用。为了解决这些挑战#xff0c;该研究… 文章概述 文章研究了城市物流背景下带有第三方转运设施的车辆路径问题。与经典的车辆路径问题不同这些问题提供了将客户需求交付给第三方转运设施如城市集散中心的选择并收取一定的费用。为了解决这些挑战该研究提出了一种自适应大邻域搜索ALNS其中嵌入了一个随机变量邻域下降作为局部搜索组件并使用集合划分问题来解决路由重组。 这篇论文介绍并研究了车辆路径问题与转运设施VRPTF的两个新问题变体带有时间窗口和转运设施的车辆路径问题VRPTWTF以及带有时间窗口和转运设施的车队规模和混合车辆路径问题FSMTWTF。这些变体考虑了与位置有关的时间窗口和异构车队。所提出的方法在现有文献中的基准实例和新创建的实例上进行了测试显示出有希望的结果并改进了现有算法。还提出了一个真实世界的研究以了解转运费用、订单大小和异构车队对转运决策的影响。 研究背景 本文的研究背景集中在城市物流领域的车辆路径问题特别是涉及第三方转运设施的问题。城市物流和最后一公里配送面临诸多挑战如公众对可持续性的日益关注、城市通行限制和不断增长的配送量。为应对这些挑战物流服务提供商通常采用在转运设施如城市集结中心UCCs集中货物的方式来提高城市货运效率。城市集结中心定义为靠近城市区域的物流转运设施可跨公司整合城市货运。尽管有关UCCs的研究众多且多个城市已实施了UCCs但很少有研究将个别货件是否外包给第三方转运设施如UCCs的决策纳入车辆路径问题中。 问题介绍 文中提到的“带时间窗口和转运设施的车辆路径问题”VRPTWTF是一种车辆路径问题VRP的变体。在传统的车辆路径问题中车辆从一个集散中心出发直接将货物配送到各个客户处。然而VRPTWTF引入了两个重要的额外特征时间窗口和转运设施。 时间窗口Time Windows这指的是每个客户地点可接收货物的特定时间范围。车辆必须在这个时间窗口内到达客户地点以完成货物交付。时间窗口对路线规划构成了额外的约束因为它限制了车辆到达各地点的可能时间。 转运设施Transshipment Facilities在VRPTWTF中除了直接向客户配送之外还可以选择将货物先运送到第三方的转运设施例如城市集结中心UCCs。在这些转运设施中货物可以进行重新整合或中转之后再由不同的车辆或方式最终配送到客户手中。这种方法特别适用于城市物流可以帮助缓解城市交通压力、减少碳排放并提高配送效率。 VRPTWTF的核心挑战在于如何优化车辆路线和货物分配以在满足时间窗口约束的同时充分利用转运设施的优势。这包括决定哪些货物应该直接送达客户哪些应该通过转运设施以及如何安排车辆路线使得总成本最低效率最高。 方法介绍 这篇论文详细介绍了自适应大邻域搜索(ALNS)的方法论这是一种用于解决车辆路径问题的元启发式方法其特点是通过移除和插入程序执行大规模移动。该算法涉及初始化参数创建初始解决方案然后通过移除和插入程序迭代地破坏和修复解决方案。还嵌入了局部搜索过程以进一步改进解决方案。 搜索空间和目标函数的设计考虑了在搜索过程中关于时间窗约束的不可行解。这是通过使用“时间松弛方案”来实现的该方案允许车辆“时间倒流”以满足时间窗约束而这种时间扭曲会用于对目标函数进行惩罚。自适应惩罚参数会根据现有解的可行性进行调整。 算法中的移除程序包括各种启发式方法比如随机移除、路径移除、最差移除、历史知识节点移除、肖移除、集群移除、与距离相关的移除、与时间相关的移除以及相邻字符串移除。每个程序都有特定的策略来选择从当前解决方案中移除哪些客户请求。 The removal procedures in the adaptive large neighborhood search (ALNS) algorithm, as detailed in the paper, are designed to selectively remove customer requests from the current solution. These procedures play a crucial role in the algorithm’s iterative process of destroying and repairing solutions to find an optimal route. Each removal procedure has its unique strategy and criteria for selecting which customer requests to remove. Here’s a summary of each: Random Removal: This heuristic randomly removes customer requests from a given solution using a uniform probability distribution. Route Removal: In this heuristic, a random route is selected, and up to a certain number of customer requests from the route are randomly removed until the desired number of customers is reached. Worst Removal: Introduced by Ropke and Pisinger (2006a), this heuristic removes customer requests that contribute significantly to the objective function’s cost. It calculates the savings of removing each customer request, sorting them in descending order, and then removing them in a controlled manner. Historical Knowledge Node Removal: This heuristic utilizes historical data, removing customer requests with the highest difference between their current costs and their historically lowest costs. Shaw Removal: Also known as related removal, this method defines the similarity between two customer requests based on several characteristics, including demand difference, distance, time window difference, and shared transshipment facilities. Customer requests are then removed based on these similarities. Cluster Removal: Developed by Ropke and Pisinger (2006b), this method aims to remove an entire cluster of customer requests. It involves partitioning the customer requests in a route into clusters and then removing one of these clusters. Distance-Related Removal: Also known as radial removal, this heuristic removes customer requests that are geographically close to each other. Time-Related Removal: This method removes customer requests that are related in terms of the time they are served. Adjacent String Removal: Introduced by Christiaens and Vanden Berghe (2020), this approach removes adjacent strings of customer requests, aiming to be more efficient by potentially eliminating detours in the destroyed route. Each of these removal procedures is designed to diversify the search process and avoid local optima by creating variations in the solutions for further exploration. 自适应大邻域搜索ALNS算法中的移除过程如论文中所述旨在有选择地从当前解中移除客户请求。这些过程在算法的迭代过程中破坏和修复解以找到最优路线起着关键作用。每个移除过程都有其独特的策略和标准来选择要移除的客户请求。以下是每个策略的概述 随机移除此启发式使用均匀概率分布从给定解中随机移除客户请求。 路线移除在此启发式中随机选择一个路线并从该路线中随机移除一定数量的客户请求直到达到所需的客户数量。 最差移除由Ropke和Pisinger2006a引入此启发式移除对目标函数成本产生显著影响的客户服务请求。它计算移除每个客户服务请求的节省按降序排序然后以受控的方式移除它们。 历史知识节点移除此启发式利用历史数据移除具有当前成本与历史最低成本之间最高差异的客户请求。 Shaw移除也称为相关移除此方法根据几个特征定义两个客户服务请求之间的相似性包括需求差异、距离、时间窗口差异和共享运输设施。然后根据这些相似性移除客户服务请求。 集群移除由Ropke和Pisinger2006b开发此方法旨在移除整个客户服务请求集群。它涉及将路线上的客户服务请求划分为集群然后移除其中一个集群。 距离相关移除也称为径向移除此启发式移除地理位置相近的客户请求。 时间相关移除该方法移除与提供服务的时间相关的客户服务请求。 相邻字符串移除由Christiaens和Vanden Berghe2020引入此方法移除相邻的客户请求字符串旨在通过可能消除被破坏路线上的绕路来提高效率。 每个移除过程都设计为多样化搜索过程并通过在解决方案中创建变化以避免局部最优解从而进一步探索。 插入程序用于将已删除的客户请求重新整 合到解决方案中。这些程序包括随机顺序最佳插入、需求顺序最佳插入、最远优先最佳插入和最近优先最佳插入。这些程序考虑需求、到仓库的距离和其他标准来确定最佳插入位置。 本地搜索过程通过将ALNS方法与随机变邻域下降RVND相结合来加强搜索。这涉及选择邻域并在解决方案中寻找改进。该算法还使用各种路由间和路由内邻域来实现更好的局部最优解。 研究结论与讨论 最后本文讨论了一个由混合整数规划MIP求解的集合分割问题SP模型。该模型有助于在确保每个客户请求在解决方案中仅包含一次的同时最小化路线成本之和。该模型针对车队规模和混合问题变体进行了调整。
http://www.ihoyoo.com/news/16642.html

相关文章:

  • 松江网站建设品划网络网站做电源
  • 南宁建设信息网站响应式网站建设特色
  • 商城网站实例seo网站推广策略
  • 网站建设实验作业哪些网站专做新闻
  • 贸易公司做推广的网站网站推广应该坚持( )策略。
  • 怎么用PHP做网站留言板网站功能建设描述书
  • 洛阳建设网站制作wordpress升级需要ftp
  • 站长之家爱站网wordpress 上传html
  • 南阳专业做网站wordpress不用小尺寸图片
  • 信息中心加强网站建设雄安做网站要多少钱
  • 网站团购功能怎么做南昌企业网站模板建站
  • 拉丝机东莞网站建设叶榭做网站
  • 网站登录不了邦派巴洛特网站是谁做的呀
  • 网站头部优化文字怎么做重庆装修价格明细表
  • 网站架设建设wordpress dz
  • 网站建设的固定资产包括哪些德州做网站公司电话
  • 临安区做网站的公司做网站的开发软件
  • 路桥做网站的公司tengine wordpress
  • dede网站地图调用长春网站建设长春电梯公司
  • 网站建设丿金手指排名9路由器做php网站吗
  • 网站建设题目特效音网站
  • 专业网站建设品牌策怎样营销能有效获取客户
  • 口碑好的网站开发公司哪家最专业长安营销型网站建设
  • 帮别人做违法网站网站中的横幅怎么做
  • 池州市建设厅官方网站企业网站策划实训
  • 请小组讨论一个完整的网页设计流程网站怎样关键词排名优化
  • 维护网站成本企业网站设计原则
  • 网站建设案例市场网站的运营推广方案
  • 专门做餐厅设计的网站免费个人网站建站申请流程
  • 企业网站备案资料网站建设08